МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Министерство образования Красноярского края Администрация Дзержинского района Красноярского края МБОУ Дзержинская СШ№2

P	۸	\sim	\cap	\ /	[\mathbf{r}	Γ	\mathbf{D}	Γ	\Box	\cap	١.
	┥,		L /I	v		,			١,١			,

Руководитель ШМО учителей естественноматематического цикла СОГЛАСОВАНО

заместитель директора по МР

УТВЕРЖДЕНО

Директор школы

Иванова Н.Н.

Порунова Н.В

Протокол №1 от «01» 09 2025 г.

Приказ №167 от «01» 09 2025 г.

Бедюх Т.А. Протолок №1 от «29.» 08 2025 г.

РАБОЧАЯ ПРОГРАММА

учебного предмета «Искусственный интеллект»

для обучающихся 10 – 11 классов

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Образовательная программа элективного курса «Искусственный интеллект» в 10,11 классе составлена на основе требований к результатам освоения основной образовательной программы среднего общего образования, представленных в ФГОС СОО, а также федеральной программы воспитания.

Направление программы – обще интеллектуальное.

Срок реализации рабочей программы – 2 года.

Программа рассчитана на 68 часов (1 час в неделю).

Промежуточная аттестация освоения элективного курса предусмотрена по итогам четвертей и года с фиксацией в электронном журнале результата «зачёт/ незачёт».

Цель реализации программы: — является развитие у учащихся устойчивого интереса к освоению данной области знаний и формирование базовых знаний о науке о данных и машинном обучении, а также о многообразии сфер их применения.

Задачи:

- Развитие представлений о многообразии подходов в разработке искусственного интеллекта, их возможностях и ограничениях.
- Формирование знаний о современных перспективных направлениях и о различных подходах моделирования интеллектуальной деятельности; о нейронных сетях и решении задач с их использованием; о машинном обучении и сферах его применения.
- Развитие у учащихся умений проектирования и реализации модели машинного обучения на Python, коммуникационных умений и навыков работы в команде, умений самостоятельной работы и организационной культуры.
- реальности и дополненной реальности.

I. Содержание элективного курса (с указанием форм организации и видов деятельности).

Модуль (раздел) 1. Анализ данных на Python

- Тема 1.1. Наука о данных. Структуры данных. Данные, наука о данных, открытые данные, источники данных, структуры данных (стек, массив, очередь, хэш -таблица).
- Тема 1.2. Работа со списками Python. Структуры данных, списки, список, элемент списка, индекс, отрицательная индексация.
- Тема 1.3. Работа с таблицами и подготовка данных. Списки в Python, операции над списками, основные методы для работы со списками. Работа с табличными данными. Функции мин(), макс() и срзнач() в Excel, поиск, очистка, преобразование, организация и сбор данных.
- Тема 1.4. Библиотеки Python. Библиотека Pandas. Поиск, очистка, преобразование, организация и сбор данных. Библиотека языка программирования, библиотеки Python, библиотека Pandas, импорт библиотек.
- Тема 1.5. Структуры данных в Pandas. Поиск, очистка, преобразование, организация и сбор данных, структуры данных в Pandas. Структура данных Series.
- Тема 1.6. Структура данных Dataframe. Структура данных DataFrame, словарь, список, функция read_csv, методы head и tail.
- Тема 1.7. Доступ к данным в структурах Pandas. DataFrame, функция display (), методы loc и iloc. Вывод данных по меткам и срезам меток, индексам и срезам индексов в Series. Вывод данных по атрибутам, срезам меток и логическим условиям в DataFrame
- Тема 1.8. Работа с пропусками в данных. Простая фильтрация, функция query, логические условия. Пропуски данных, методы dropna, fillna.
- Тема 1.9. Работа со структурами данных в Pandas. Информация о данных, методы info и describe, числовые и категориальные признаки. Агрегирующие функции value_counts, unique, nunique, groupby. Методы min (), max () и mean (). Объединение таблиц с помощью метода merge, параметры on и how.
- Тема 1.10. Операции над данными. Арифметические и логические операции. Простейшие арифметические операторы, логические операторы, операции над столбцами датафрейма, присоединении серии к датафрейму; функции query, str.match, str.contain.
- Тема 1.11. Статистические данные. Метод describe, числовые и категориальные показатели. Минимальное, максимальное и среднее арифметическое значения, квартили и стандартное отклонение.
- Тема 1.12. Описательная статистика. Методы info, describe, min, max, mean. Условия фильтрации данных. Статистика по категориальным параметрам, фильтрация данных, статистические методы.

- Тема 1.13. Библиотека визуализации данных. Визуализация данных, преимущества диаграмм и графиков. Виды диаграмм. Библиотеки Pandas, Matplotlib, Seaborn и построение графиков и диаграмм с помощью этих библиотек. Методы plot, hist, scatter, joinplot, pairplot, countplot.
- Тема 1.14. Построение графиков. Типы сравнений и типы диаграмм, правила оформления диаграмм. Методы библиотеки Pandas для настройки внешнего вида графиков. Методы библиотеки Matplotlib для построения и настройки внешнего вида графиков.
- Тема 1.15. Построение диаграмм. Методы hist и scatter, принципы построения столбчатых диаграмм. Функция pivot_table, метод bar и его параметры.
- Тема 1.16. Настройка внешнего вида диаграмм. Методы и параметры для настройки внешнего вида гистограмм, столбчатых и точечных диаграмм.
- Тема 1.17. Библиотека NumPy. Библиотека NumPy, массив. Массив в NumPy, характеристики массивов, их отличие от известных ранее структур данных, размерность массива, тип данных, доступ к элементам массива. Работа с массивами NumPy: создание, вывод элементов массива, операции над массивами.
- Тема 1.18. Проект «Исследование данных». Часть 1. Основные понятия темы «Руthon для Data Science». Выполнение практической работы по исследованию данных в блокноте Jupyter Notebook.
- Тема 1.19. Проект «Исследование данных». Часть 2. Основные понятия темы «Python для Data Science». Выполнение и презентация проекта «Исследование данных».
- Тема 1.20. Обобщение и систематизация основных понятий темы «Анализ данных с использованием Python». Series, DataFrame, статистические методы, работа с NumPy. Понятия, изученные в модуле (разделе) «Анализ данных на Python».
- Тема 1.21. Итоговая контрольная работа. Основные понятия модуля (раздела) «Анализ данных на Python». Выполнение контрольной работы.

Модуль (раздел) 2. Машинное обучение

- Тема 2.1. Понятие и виды машинного обучения. Искусственный интеллект. Подход, основанный на правилах. Машинное обучение. История развития ИИ в играх. Сферы применения машинного обучения. Обучение с учителем, обучение без учителя. Задача регрессии, задача классификации, задача кластеризации. Отбор данных для модели машинного обучения.
- Тема 2.2. Анализ и визуализация данных. Машинное обучение с учителем, машинное

обучение без учителя, задача регрессии, задача классификации, задача кластеризации. Библиотеки pandas и matplotlib, чтение табличных данных, статистические показатели, построение диаграмм.

Тема 2.3. Библиотеки машинного обучения. Машинное обучение с учителем и без учителя, его преимущества. Постановка цели и задач, анализ

- данных. Обучающая и тренировочная выборки, задача регрессии, задача классификации. Тестовая и тренировочная выборка. Переобучение, недообучение, оптимальная модель, кросс- валидация. Библиотека sklearn, этапы и методы построения модели машинного обучения на Python (разделение датасета на тестовый и тренировочный, создание модели, обучение модели, прогноз результата, оценка алгоритма).
- Тема 2.4. Линейная регрессия. Понятие линейной регрессии, целевая функция, линейное уравнение, гомоскедастичность данных. Этапы создания модели машинного обучения, подбор коэффициентов линейного уравнения.
- Тема 2.5. Нелинейные зависимости. Создание, обучение и оценка модели линейной регрессии, визуализация данных на Python. Нелинейный функции, графики функций. Полиномиальное преобразование линейной регрессии.
- Тема 2.6. Классификация. Логистическая регрессия. Классификация, линейный классификатор, регрессия, гиперплоскость, логистическая классификация, мультиклассовая классификация. Линейное бинарная линейного уравнения, расположение точки уравнение, коэффициенты относительно прямой, отступ объекта. Создание, обучение и оценка модели логистической регрессии. Матрица ошибок, метрики качества логистической регрессии, модель логистической регрессии на Python.
- Тема 2.7. Деревья решений. Часть 1. Матрица ошибок, метрики качества логистической регрессии, модель логистической регрессии на Python.
- Тема 2.8. Случайный лес. Дерево решений, атрибуты, эффективность разбиения, глубина дерева, идея алгоритма случайного леса, принцип мудрости толпы, случайный лес для решения задачи классификации и регрессии.
- Тема 2.9. Кластеризация. Машинное обучение без учителя, классификация, кластеризация, алгоритм k-средних, центроид, расстояние между точками.
- Тема 2.10. Проект. Представление проекта. Машинное обучение с учителем, задача классификации, метрики оценки качества классификации. Этапы разработки модели машинного обучения, анализ данных, создание и обучение модели, оценка эффективности работы модели.
- Тема 2.11. Проект «Основы машинного обучения» (обобщение и систематизация основных понятий темы). Понятие и виды машинного обучения, линейная регрессия, логистическая регрессия, деревья решений, случайный лес, кластеризация. Понятия, изученные в модуле (разделе) «Машинное обучение».
- Тема 2.12. Итоговая проектная работа. Понятия, изученные в модуле (разделе) «Машинное обучение». Выполнение и представление проекта.

Модуль (раздел) 3. Введение в нейросети.

Тема 3.1. Введение в нейросети. Искусственный нейрон, информационная модель искусственного нейрона, межнейронные связи,

нейронная сеть, структурный подход к моделированию нейронных сетей, нейрокомпьютер, персептрон, генетический алгоритм, эволюционный подход к моделированию нейронных сетей, квазибиологический подход к моделированию нейронных сетей, молекулярный компьютер.

Тема 3.2. Проект. Нейронные сети, структурный подход к обучению нейросетей, моделирование двухслойной нейросети.

Виды и формы организации и виды деятельности.

Раздел	Формы организации	Виды деятельности	
Анализ данных на Python	соревнования, викторина, игра, выставка, конкурс, круглый стол, поисковые исследования,	Беседа, работа в группе, диалог, игра, разработка и защита мини-проекта, создание мотивационной презентации	
Машинное обучение	соревнования, викторина, игра, выставка, конкурс, круглый стол, поисковые исследования,	Беседа, работа в группе, диалог, игра, разработка и защита мини-проекта, создание мотивационной презентации	
Введение в нейросети.	соревнования, викторина, игра, выставка, конкурс, круглый стол, поисковые исследования,	Беседа, работа в группе, диалог, игра, разработка и защита мини-проекта, создание мотивационной презентации	

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ ПРОГРАММЫ НА УРОВНЕ СРЕДНЕГО ОБЩЕГО ОБРАЗОВАНИЯ

І.ЛИЧНОСТНЫЕ РЕЗУЛЬТАТЫ

Личностные результаты отражают готовность и способность обучающихся руководствоваться сформированной внутренней позицией личности, системой ценностных ориентаций, позитивных внутренних убеждений, соответствующих традиционным ценностям российского общества, расширение жизненного опыта и опыта деятельности в процессе реализации средствами учебного предмета основных направлений воспитательной деятельности.

В результате изучения элективного курса на уровне среднего общего образования у обучающегося будут сформированы следующие личностные результаты:

1) гражданского воспитания:

- осознание своих конституционных прав и обязанностей, уважение закона и правопорядка, соблюдение основополагающих норм информационного права и информационной безопасности;
- готовность противостоять идеологии экстремизма, национализма, ксенофобии, дискриминации по социальным, религиозным, расовым, национальным признакам в виртуальном пространстве;
- 2) патриотического воспитания:
- ценностное отношение к историческому наследию, достижениям России в науке, искусстве, технологиях, понимание значения искусственного интеллекта в жизни современного общества;

3) духовно-нравственного воспитания:

- сформированность нравственного сознания, этического поведения;
- способность оценивать ситуацию и принимать осознанные решения, ориентируясь на морально-нравственные нормы и ценности, в том числе в сети Интернет;

4) эстетического воспитания:

- эстетическое отношение к миру, включая эстетику научного и технического творчества;
- способность воспринимать различные виды искусства, в том числе основанного на использовании информационных технологий;

5) физического воспитания:

- сформированность здорового и безопасного образа жизни, ответственного отношения к своему здоровью, в том числе за счёт соблюдения требований безопасной эксплуатации средств информационных и коммуникационных технологий;

6) трудового воспитания:

- готовность к активной деятельности технологической и социальной направленности, способность инициировать, планировать и самостоятельно выполнять такую деятельность;
- интерес к сферам профессиональной деятельности, связанным с информатикой, программированием и информационными технологиями, основанными на достижениях научно-технического прогресса, умение совершать осознанный выбор будущей профессии и реализовывать собственные жизненные планы;
- готовность и способность к образованию и самообразованию на протяжении всей жизни;

7) экологического воспитания:

 осознание глобального характера экологических проблем и путей их решения, в том числе с учётом возможностей искусственного интеллекта;

8) ценности научного познания:

- сформированность мировоззрения, соответствующего современному уровню развития науки, достижениям научно-технического прогресса и общественной практики, за счёт понимания роли информационных ресурсов, информационных процессов и информационных технологий в условиях цифровой трансформации многих сфер жизни современного общества;
- формирование у учащегося интереса к достижениям науки и технологии в области искусственного интеллекта
- осознание ценности научной деятельности, готовность осуществлять проектную и исследовательскую деятельность индивидуально и в группе.

В процессе достижения личностных результатов освоения программы по информатике у обучающихся совершенствуется эмоциональный интеллект, предполагающий сформированность:

- саморегулирования, включающего самоконтроль, умение принимать ответственность за своё поведение, способность адаптироваться к эмоциональным изменениям и проявлять гибкость, быть открытым новому;
- внутренней мотивации, включающей стремление к достижению цели и успеху, оптимизм, инициативность, умение действовать, исходя из своих возможностей;
- эмпатии, включающей способность понимать эмоциональное состояние других, учитывать его при осуществлении коммуникации, способность к сочувствию и сопереживанию;
- социальных навыков, включающих способность выстраивать отношения с другими людьми, заботиться, проявлять интерес и разрешать конфликты.
- формирование у учащегося установки на осмысленное и безопасное взаимодействие с технологиями и устройствами, реализованными на основе принципов искусственного интеллекта.
- приобретение опыта творческой деятельности, опирающейся на использование современных информационных технологий, в том числе искусственного интеллекта.
- формирование у учащегося установки на сотрудничество и командную работу при решении исследовательских, проблемных и изобретательских задач.

МЕТАПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

- Умение работать с информацией, анализировать и структурировать

- полученные знания и синтезировать новые, устанавливать причинно-следственные связи.
- Умения объяснять явления, процессы, связи и отношения, выявляемые в ходе познавательной и исследовательской деятельности.
- Умение делать выводы на основе критического анализа разных точек зрения, подтверждать их собственной
- аргументацией или самостоятельно полученными данными.
- Умение анализировать/рефлексировать опыт исследования (теоретического, эмпирического) на основе предложенной ситуации, поставленной цели.
- Умение строить рассуждение на основе сравнения предметов и явлений.

Регулятивные УУД:

- Умение обосновывать целевые ориентиры и приоритеты ссылками на ценности, указывая и обосновывая логику.
- Умение планировать необходимые действия в соответствии с учебной и познавательной задачей и составлять алгоритм их выполнения.
- Умение описывать свой опыт, оформляя его для передачи другим людям в виде технологии решения практических задач определенного класса.
- Умение выбирать из предложенных вариантов и самостоятельно искать средства/ресурсы для решения задачи/достижения цели в ходе исследовательской деятельности.
- -Умение принимать решение в игровой и учебной ситуации и нести за него ответственность.

Коммуникативные УУД

- -Умение взаимодействовать в команде, умением вступать в диалог и вести его.
- Умение соблюдать нормы публичной речи, регламент в монологе и дискуссии в соответствии с коммуникативной задачей.
- Умение определять свои действия и действия партнеров для продуктивной коммуникации.
- Умение приходить к консенсусу в дискуссии или командной работе и о различных подходах к моделированию интеллектуальной деятельности.

п. ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

- Иметь представление о современных и перспективных направлениях

- моделирования интеллектуальной деятельности и о различных подходах к моделированию интеллектуальной деятельности.
- Уметь приводить примеры решения различных задач с использованием нейронных сетей.
- Иметь представление о науке о данных.
- Уметь выполнять первичный анализ данных на Python с использованием библиотек Pandas, Matplotlib, NumPy,
- визуализировать данные, искать в данных закономерности, решать практические и исследовательские задачи по анализу данных.
- Иметь представления о многообразии подходов в разработке искусственного интеллекта, их возможностях и ограничениях; о машинном обучении и сферах его применения
- Уметь объяснять разницу между машинным обучением с учителем и без учителя.
- Выявлять и формулировать задачи машинного обучения для различных сфер жизни человека и в соответствии с реальными потребностями
- Иметь представления о недообученных и переобученных моделях машинного обучения, уметь выявлять проблемы по характерным признакам и знать способы борьбы с переобучением и недообучением моделей.
- Иметь представления о сущности работы модели классификации объектов; об использовании деревьев решений в машинном обучении.
- Уметь создавать модели линейной регрессии на Python с помощью библиотек pandas, numpy и sklearn.
- Уметь проектировать и реализовывать модели машинного обучения на Python с помощью инструментов библиотеки sklearn

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ 10 КЛАСС

10 11			TT	
№ п/п	Наименование разделов и тем программы	Количес тво часов	Дата	Дополнитель ная информация
	Раздел анализ данных на python			
1.	Работа со списками python	1	4.09	
2.	Работа с таблицами и подготовка данных	1	11.09	
3.	Библиотеки python. Библиотека pandas	1	18.09	
4.	Структуры данных в pandas	1	25.09	
5.	Структура данных dataframe	1	2.10	
6.	Доступ к данным в структурах pandas	1	9.10	
7.	Работа с пропусками в данных	1	16.10	
8.	Работа со структурами данных в pandas	1	23.10	
9.	Операции над данными. Арифметические и логические операции	1	6.11	
10.	Статистические данные	1	13.11	
11.	Описательная статистика	1	20.11	
12.	Библиотека визуализации данных	1	27.11	
13.	Построение графиков	1	4.12	
14.	Построение диаграмм	1	11.12	
15.	Настройка внешнего вида диаграмм	1	18.12	
16.	Библиотека numpy	1	25.12	
17.	Библиотека numpy	1		
18.	Библиотека numpy	1		
19.	Библиотека numpy	1		
20.	Проект «исследование данных». Часть 1	1		
21.	Проект «исследование данных». Часть 1, часть 2	1		

22.	Обобщение и систематизация основных понятий темы «анализ данных с использованием python»	1	
23.	Основные понятия темы «python для data science»	1	
24.	Итоговая занятие по разделу		
	Раздел машинное обучение		
25.	Понятие и виды машинного обучения	1	
26.	Анализ и визуализация данных	1	
27.	Библиотеки машинного обучения	1	
28.	Линейная регрессия	1	
29.	Создание, обучение и оценка модели линейной регрессии, визуализация данных на python; нелинейный функции	1	
30.	Графики функций; полиномиальное преобразование линейной регрессии	1	
31.	Классификация, логистическая регрессия, линейный классификатор, гиперплоскость,	1	
32.	Бинарная классификация,	1	
33.	Мультиклассовая классификация; линейное уравнение,	1	
34.	Коэффициенты линейного уравнения, расположение точки относительно прямой, отступ объекта	1	
	Всего	34	

11 класс

	NJIACC			
№ п/п	Наименование разделов и тем программы	Количес тво часов	Электронн ые образовател ьные ресурсы	Дополнитель ная информация
	Раздел машинное обучение			
1.	Создание, обучение и оценка модели логистической регрессии	1	4.09	
2.	Матрица ошибок	1	11.09	
3.	Метрики качества логистической регрессии	1	18.09	
4.	Модель логистической регрессии на python	1	25.09	
5.	Дерево решений	1	2.10	
6.	Элементы деревьев: корень, листья	1	9.10	
7.	Глубина дерева	1	16.10	
8.	Жадный алгоритм, атрибут разбиения; энтропия	1	23.10	
9.	Формула шеннона, вероятность, критерий джини	1	6.11	
10.	Дерево решений, атрибуты, эффективность разбиения	1	13.11	
11.	Глубина дерева, идея алгоритма случайного леса	1	20.11	
12.	Случайный лес для решения задачи классификации и регрессии	1	27.11	
13.	Машинное обучение без учителя	1	4.12	
14.	Классификация, кластеризация	1	11.12	
15.	Алгоритм k-средних, центроид, расстояние между точками	1	18.12	
16.	Машинное обучение с учителем, задача классификации	1	25.12	
17.	Метрики оценки качества классификации	1		
18.	Этапы разработки модели машинного обучения	1		

19.	Анализ данных, создание и обучение модели	1
20.	Оценка эффективности работы модели	1
21.	Понятие и виды машинного обучения, линейная регрессия	1
22.	Логистическая регрессия, деревья решений, случайный лес.	1
23	Кластеризация; понятия, изученные в разделе «машинное обучение»	
24	Итоговая проектная работа	1
25	Защита итоговой проектной работы	1
26	Искусственный нейрон, информационная модель искусственного нейрона.	1
27	Межнейронные связи, нейронная сеть	1
28	Структурный подход к моделированию нейронных сетей.	1
29	Нейрокомпьютер персептрон, генетический алгоритм, эволюционный подход к моделированию нейронных сетей	1
30	Квазибиологический подход к моделированию нейронных сетей, молекулярный компьютер.	1
31	Нейронные сети	1
32	Двухслойной нейросети	1

33	Моделирование двухслойной нейросети	1	
34	Разработки двухслойной нейросети.	1	

•